Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 97, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561811

RESUMO

BACKGROUND: Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established. Here, thraustochytrid Schizochytrium limacinum SR21 was investigated for its ability to convert oils (commercial oils with varying fatty acid composition and waste cooking oil) into ω-3 fatty acid; docosahexaenoic acid (DHA). RESULTS: Within 72 h SR21 consumed ~ 90% of the oils resulting in enhanced biomass (7.5 g L- 1) which was 2-fold higher as compared to glucose. Statistical analysis highlights C16 fatty acids as important precursors of DHA biosynthesis. Transcriptomic data indicated the upregulation of multiple lipases, predicted to possess signal peptides for secretory, membrane-anchored and cytoplasmic localization. Additionally, transcripts encoding for mitochondrial and peroxisomal ß-oxidation along with acyl-carnitine transporters were abundant for oil substrates that allowed complete degradation of fatty acids to acetyl CoA. Further, low levels of oxidative biomarkers (H2O2, malondialdehyde) and antioxidants were determined for hydrophobic substrates, suggesting that SR21 efficiently mitigates the metabolic load and diverts the acetyl CoA towards energy generation and DHA accumulation. CONCLUSIONS: The findings of this study contribute to uncovering the route of assimilation of oil substrates by SR21. The thraustochytrid employs an intricate crosstalk among the extracellular and intracellular molecular machinery favoring energy generation. The conversion of hydrophobic substrates to DHA can be further improved using synthetic biology tools, thereby providing a unique platform for the sustainable recycling of waste oil substrates.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Ácidos Docosa-Hexaenoicos/metabolismo , Acetilcoenzima A/metabolismo , Peróxido de Hidrogênio/metabolismo , Estramenópilas/genética , Ácidos Graxos/metabolismo , Biotransformação , Perfilação da Expressão Gênica , Glucose/metabolismo
2.
Trends Plant Sci ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38350829

RESUMO

Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.

3.
Trends Biotechnol ; 40(10): 1261-1273, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35450778

RESUMO

Squalene is generally sourced from the liver oil of deep sea sharks (Squalus spp.), in which it accounts for 40-70% of liver mass. To meet the growing demand for squalene because of its beneficial effects for human health, three to six million deep sea sharks are slaughtered each year, profoundly endangering marine ecosystems. To overcome this unsustainable practice, microbial sources of squalene might offer a viable alternative to plant- or animal-based squalene, although only a few microorganisms have been found that are capable of synthesizing up to 30% squalene of dry biomass by native biosynthetic pathways. These squalene biosynthetic pathways, on the other hand, can be genetically manipulated to transform microorganisms into 'cellular factories' for squalene overproduction.


Assuntos
Tubarões , Esqualeno , Animais , Vias Biossintéticas , Ecossistema , Engenharia Genética , Humanos , Tubarões/genética , Tubarões/metabolismo , Esqualeno/metabolismo
4.
Mar Drugs ; 20(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323479

RESUMO

The marine microorganisms thraustochytrids have been explored for their potential in the production of various bioactive compounds, such as DHA, carotenoids, and squalene. Squalene is a secondary metabolite of the triterpenoid class and is known for its importance in various industrial applications. The bioinformatic analysis for squalene synthase (SQS) gene (the first key enzyme in the tri-terpenoid synthesis pathway), that is prevailing among thraustochytrids, is poorly investigated. In-silico studies combining sequence alignments and bioinformatic tools helped in the preliminary characterization of squalene synthases found in Aurantiochytrium limacinum. The sequence contained highly conserved regions for SQS found among different species indicated the enzyme had all the regions for its functionality. The signal peptide sequence and transmembrane regions were absent, indicating an important aspect of the subcellular localization. Secondary and 3-D models generated using appropriate templates demonstrated the similarities with SQS of the other species. The 3-D model also provided important insights into possible active, binding, phosphorylation, and glycosylation sites.


Assuntos
Organismos Aquáticos/enzimologia , Farnesil-Difosfato Farnesiltransferase/química , Farnesil-Difosfato Farnesiltransferase/genética , Estramenópilas/enzimologia , Sequência de Aminoácidos , Organismos Aquáticos/genética , Sítios de Ligação , Biologia Computacional , Ligantes , Modelos Moleculares , Estrutura Molecular , Estramenópilas/genética
5.
Microorganisms ; 9(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34576766

RESUMO

Studies with Saccharomyces cerevisiae indicated that non-physiologically high levels of acetic acid promote cellular acidification, chronological aging, and programmed cell death. In the current study, we compared the cellular lipid composition, acetic acid uptake, intracellular pH, growth, and chronological lifespan of wild-type cells and mutants lacking the protein kinase Sch9 and/or a functional V-ATPase when grown in medium supplemented with different acetic acid concentrations. Our data show that strains lacking the V-ATPase are especially more susceptible to growth arrest in the presence of high acetic acid concentrations, which is due to a slower adaptation to the acid stress. These V-ATPase mutants also displayed changes in lipid homeostasis, including alterations in their membrane lipid composition that influences the acetic acid diffusion rate and changes in sphingolipid metabolism and the sphingolipid rheostat, which is known to regulate stress tolerance and longevity of yeast cells. However, we provide evidence that the supplementation of 20 mM acetic acid has a cytoprotective and presumable hormesis effect that extends the longevity of all strains tested, including the V-ATPase compromised mutants. We also demonstrate that the long-lived sch9Δ strain itself secretes significant amounts of acetic acid during stationary phase, which in addition to its enhanced accumulation of storage lipids may underlie its increased lifespan.

6.
Sci Rep ; 11(1): 17333, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462478

RESUMO

The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid.


Assuntos
Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Difusão , Elongases de Ácidos Graxos/metabolismo , Fermentação , Glicerofosfolipídeos/química , Cinética , Lignina/química , Metabolismo dos Lipídeos , Lipidômica , Lipídeos/química , Simulação de Dinâmica Molecular , Plasmídeos/metabolismo
7.
Yeast ; 38(7): 391-400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000094

RESUMO

Acetic acid stress represents a frequent challenge to counteract for yeast cells under several environmental conditions and industrial bioprocesses. The molecular mechanisms underlying its response have been mostly elucidated in the budding yeast Saccharomyces cerevisiae, where acetic acid can be either a physiological substrate or a stressor. This review will focus on acetic acid stress and its response in the context of cellular transport, pH homeostasis, metabolism and stress-signalling pathways. This information has been integrated with the results obtained by multi-omics, synthetic biology and metabolic engineering approaches aimed to identify major cellular players involved in acetic acid tolerance. In the production of biofuels and renewable chemicals from lignocellulosic biomass, the improvement of acetic acid tolerance is a key factor. In this view, how this knowledge could be used to contribute to the development and competitiveness of yeast cell factories for sustainable applications will be also discussed.


Assuntos
Ácido Acético/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
8.
AMB Express ; 10(1): 219, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331971

RESUMO

To enhance the competitiveness of industrial lignocellulose ethanol production, robust enzymes and cell factories are vital. Lignocellulose derived streams contain a cocktail of inhibitors that drain the cell of its redox power and ATP, leading to a decrease in overall ethanol productivity. Many studies have attempted to address this issue, and we have shown that increasing the glutathione (GSH) content in yeasts confers tolerance towards lignocellulose inhibitors, subsequently increasing the ethanol titres. However, GSH levels in yeast are limited by feedback inhibition of GSH biosynthesis. Multidomain and dual functional enzymes exist in several bacterial genera and they catalyse the GSH biosynthesis in a single step without the feedback inhibition. To test if even higher intracellular glutathione levels could be achieved and if this might lead to increased tolerance, we overexpressed the genes from two bacterial genera and assessed the recombinants in simultaneous saccharification and fermentation (SSF) with steam pretreated spruce hydrolysate containing 10% solids. Although overexpressing the heterologous genes led to a sixfold increase in maximum glutathione content (18 µmol gdrycellmass-1) compared to the control strain, this only led to a threefold increase in final ethanol titres (8.5 g L- 1). As our work does not conclusively indicate the cause-effect of increased GSH levels towards ethanol titres, we cautiously conclude that there is a limit to cellular fitness that could be accomplished via increased levels of glutathione.

9.
Biotechnol Biofuels ; 13: 47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190112

RESUMO

BACKGROUND: As the circular economy advocates a near total waste reduction, the industry has shown an increased interest toward the exploitation of various residual biomasses. The origin and availability of biomass used as feedstock strongly affect the sustainability of biorefineries, where it is converted in energy and chemicals. Here, we explored the valorization of Camelina meal, the leftover residue from Camelina sativa oil extraction. In fact, in addition to Camelina meal use as animal feed, there is an increasing interest in further valorizing its macromolecular content or its nutritional value. RESULTS: Camelina meal hydrolysates were used as nutrient and energy sources for the fermentation of the carotenoid-producing yeast Rhodosporidium toruloides in shake flasks. Total acid hydrolysis revealed that carbohydrates accounted for a maximum of 31 ± 1.0% of Camelina meal. However, because acid hydrolysis is not optimal for subsequent microbial fermentation, an enzymatic hydrolysis protocol was assessed, yielding a maximum sugar recovery of 53.3%. Separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and SSF preceded by presaccharification of Camelina meal hydrolysate produced 5 ± 0.7, 16 ± 1.9, and 13 ± 2.6 mg/L of carotenoids, respectively. Importantly, the presence of water-insoluble solids, which normally inhibit microbial growth, correlated with a higher titer of carotenoids, suggesting that the latter could act as scavengers. CONCLUSIONS: This study paves the way for the exploitation of Camelina meal as feedstock in biorefinery processes. The process under development provides an example of how different final products can be obtained from this side stream, such as pure carotenoids and carotenoid-enriched Camelina meal, can potentially increase the initial value of the source material. The obtained data will help assess the feasibility of using Camelina meal to generate high value-added products.

10.
Sci Rep ; 8(1): 2905, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440668

RESUMO

Biosurfactants are biological tensioactive agents that can be used in the cosmetic and food industries. Rhamnolipids are glycolipid biosurfactants naturally produced by Pseudomonas aeruginosa and are composed of one or two rhamnose molecules linked to beta-hydroxy fatty acid chains. These compounds are green alternatives to petrochemical surfactants, but their large-scale production is still in its infancy, hindered due to pathogenicity of natural producer, high substrate and purification costs and low yields and productivities. This study, for the first time, aimed at producing mono-rhamnolipids from sucrose by recombinant GRAS Saccharomyces cerevisiae strains. Six enzymes from P. aeruginosa involved in mono-rhamnolipid biosynthesis were functionally expressed in the yeast. Furthermore, its SUC2 invertase gene was disrupted and a sucrose phosphorylase gene from Pelomonas saccharophila was also expressed to reduce the pathway's overall energy requirement. Two strains were constructed aiming to produce mono-rhamnolipids and the pathway's intermediate dTDP-L-rhamnose. Production of both molecules was analyzed by confocal microscopy and mass spectrometry, respectively. These strains displayed, for the first time as a proof of concept, the potential of production of these molecules by a GRAS eukaryotic microorganism from an inexpensive substrate. These constructs show the potential to further improve rhamnolipids production in a yeast-based industrial bioprocess.


Assuntos
Engenharia Genética , Glicolipídeos/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sacarose/metabolismo , Glicolipídeos/química
11.
Sci Rep ; 7: 42635, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205618

RESUMO

The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase Ald5, phenylacrylic acid decarboxylase Pad1, and alcohol acetyltransferases Atf1 and Atf2, were hypothesised to be involved. Corresponding genes for the four enzymes were overexpressed in a S. cerevisiae strain named APT_1. The ability of APT_1 to tolerate and convert the three phenolic compounds was tested. APT_1 was also compared to strains B_CALD heterologously expressing coniferyl aldehyde dehydrogenase from Pseudomonas, and an ald5Δ strain, all previously reported. APT_1 exhibited the fastest conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. Using the intermediates and conversion products of each compound, the catabolic route of coniferyl aldehyde, ferulic acid and p-coumaric acid in S. cerevisiae was studied in greater detail.


Assuntos
Acetiltransferases/metabolismo , Acroleína/análogos & derivados , Aldeído Oxirredutases/metabolismo , Carboxiliases/metabolismo , Ácidos Cumáricos/metabolismo , Propionatos/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , Acroleína/metabolismo , Aldeído Oxirredutases/genética , Carboxiliases/genética , Cromatografia Gasosa-Espectrometria de Massas , Engenharia Metabólica , Pentanóis/metabolismo , Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Sci Rep ; 7: 41868, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145511

RESUMO

The sustainable production of fuels and chemicals using microbial cell factories is now well established. However, many microbial production processes are still limited in scale due to inhibition from compounds that are present in the feedstock or are produced during fermentation. Some of these inhibitors interfere with cellular membranes and change the physicochemical properties of the membranes. Another group of molecules is dependent on their permeation rate through the membrane for their inhibition. We have investigated the use of membrane engineering to counteract the negative effects of inhibitors on the microorganism with focus on modulating the abundance of complex sphingolipids in the cell membrane of Saccharomyces cerevisiae. Overexpression of ELO3, involved in fatty acid elongation, and AUR1, which catalyses the formation of complex sphingolipids, had no effect on the membrane lipid profile or on cellular physiology. Deletion of the genes ORM1 and ORM2, encoding negative regulators of sphingolipid biosynthesis, decreased cell viability and considerably reduced phosphatidylinositol and complex sphingolipids. Additionally, combining ELO3 and AUR1 overexpression with orm1/2Δ improved cell viability and increased fatty acyl chain length compared with only orm1/2Δ. These findings can be used to further study the sphingolipid metabolism, as well as giving guidance in membrane engineering.


Assuntos
Membrana Celular/metabolismo , Saccharomyces cerevisiae/genética , Esfingolipídeos/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Microb Cell ; 5(1): 42-55, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29354649

RESUMO

Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes.

14.
Bioresour Technol ; 212: 11-19, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27070284

RESUMO

The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae.


Assuntos
Acroleína/análogos & derivados , Aldeído Oxirredutases/genética , Proteínas de Bactérias/genética , Pseudomonas/genética , Saccharomyces cerevisiae/metabolismo , Acroleína/metabolismo , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Organismos Geneticamente Modificados/metabolismo , Pseudomonas/enzimologia , Saccharomyces cerevisiae/genética
15.
Biotechnol Bioeng ; 113(4): 744-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26416641

RESUMO

Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.


Assuntos
Ácido Acético/toxicidade , Lignina/metabolismo , Esfingolipídeos/metabolismo , Zygosaccharomyces/efeitos dos fármacos , Zygosaccharomyces/metabolismo , Antifúngicos/metabolismo , Membrana Celular/efeitos dos fármacos , Meios de Cultura/química , Ácidos Graxos Monoinsaturados/metabolismo , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Zygosaccharomyces/crescimento & desenvolvimento
16.
Microb Cell Fact ; 14: 149, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26392265

RESUMO

BACKGROUND: Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. RESULT: Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield increased to 127 % of the control in the presence of p-coumaric acid. Coniferyl aldehyde, ferulic acid and p-coumaric acid and their conversion products were screened for inhibition, the conversion products were less inhibitory than coniferyl aldehyde, ferulic acid and p-coumaric acid, indicating that the conversion of the three compounds by Saccharomyces cerevisiae was also a detoxification process. CONCLUSION: We conclude that the conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid into less inhibitory compounds is a form of stress response and a detoxification process. We hypothesize that all phenolic compounds are converted by Saccharomyces cerevisiae using the same metabolic process. We suggest that the enhancement of the ability of S. cerevisiae to convert toxic phenolic compounds into less inhibitory compounds is a potent route to developing a S. cerevisiae with superior tolerance to phenolic compounds.


Assuntos
Acroleína/análogos & derivados , Ácidos Cumáricos/metabolismo , Hidroxibenzoatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acroleína/metabolismo , Metabolismo , Propionatos
17.
AMB Express ; 4: 56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147754

RESUMO

Development of robust yeast strains that can efficiently ferment lignocellulose-based feedstocks is one of the requirements for achieving economically feasible bioethanol production processes. With this goal, several genes have been identified as promising candidates to confer improved tolerance to S. cerevisiae. In most of the cases, however, the evaluation of the genetic modification was performed only in laboratory strains, that is, in strains that are known to be quite sensitive to various types of stresses. In the present study, we evaluated the effects of overexpressing genes encoding the transcription factor (YAP1) and the mitochondrial NADH-cytochrome b5 reductase (MCR1), either alone or in combination, in an already robust and xylose-consuming industrial strain of S. cerevisiae and evaluated the effect during the fermentation of undiluted and undetoxified spruce hydrolysate. Overexpression of either gene resulted in faster hexose catabolism, but no cumulative effect was observed with the simultaneous overexpression. The improved phenotype of MCR1 overexpression appeared to be related, at least in part, to a faster furaldehyde reduction capacity, indicating that this reductase may have a wider substrate range than previously reported. Unexpectedly a decreased xylose fermentation rate was also observed in YAP1 overexpressing strains and possible reasons behind this phenotype are discussed.

18.
AMB Express ; 4: 46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949277

RESUMO

We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition.

19.
Biotechnol Biofuels ; 6(1): 181, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24341320

RESUMO

BACKGROUND: Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. RESULTS: Pulsed addition of 3.9 g L-1 HMF and 1.2 g L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1 hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1 hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and nitrogen assimilation were induced 1 hour after pulsing. CONCLUSIONS: The redox and energy metabolism were found to be more severely affected after pulsing of furan aldehydes during the xylose consumption phase than during glucose consumption. Conceivably, this discrepancy resulted from the low xylose utilization rate, hence suggesting that xylose metabolism is a feasible target for metabolic engineering of more robust xylose-utilizing yeast strains.

20.
Microb Cell Fact ; 12: 87, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24083827

RESUMO

BACKGROUND: Production of bioethanol from lignocellulosic biomass requires the development of robust microorganisms that can tolerate the stressful conditions prevailing in lignocellulosic hydrolysates. Several inhibitors are known to affect the redox metabolism of cells. In this study, Saccharomyces cerevisiae was engineered for increased robustness by modulating the redox state through overexpression of GSH1, CYS3 and GLR1, three genes involved in glutathione (GSH) metabolism. RESULTS: Overexpression constructs were stably integrated into the genome of the host strains yielding five strains overexpressing GSH1, GSH1/CYS3, GLR1, GSH1/GLR1 and GSH1/CYS3/GLR1. Overexpression of GSH1 resulted in a 42% increase in the total intracellular glutathione levels compared to the wild type. Overexpression of GSH1/CYS3, GSH1/GLR1 and GSH1/CYS3/GLR1 all resulted in equal or less intracellular glutathione concentrations than overexpression of only GSH1, although higher than the wild type. GLR1 overexpression resulted in similar total glutathione levels as the wild type. Surprisingly, all recombinant strains had a lower [reduced glutathione]:[oxidized glutathione] ratio (ranging from 32-67) than the wild type strain (88), suggesting a more oxidized intracellular environment in the engineered strains. When considering the glutathione half-cell redox potential (E(hc)), the difference between the strains was less pronounced. E(hc) for the recombinant strains ranged from -225 to -216 mV, whereas for the wild type it was estimated to -225 mV. To test whether the recombinant strains were more robust in industrially relevant conditions, they were evaluated in simultaneous saccharification and fermentation (SSF) of pretreated spruce. All strains carrying the GSH1 overexpression construct performed better than the wild type in terms of ethanol yield and conversion of furfural and HMF. The strain overexpressing GSH1/GLR1 produced 14.0 g L(-1) ethanol in 48 hours corresponding to an ethanol yield on hexoses of 0.17 g g(-1); while the wild type produced 8.2 g L(-1) ethanol in 48 hours resulting in an ethanol yield on hexoses of 0.10 g g(-1). CONCLUSIONS: In this study, we showed that engineering of the redox state by modulating the levels of intracellular glutathione results in increased robustness of S. cerevisiae in SSF of pretreated spruce.


Assuntos
Glutationa/metabolismo , Lignina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Glutationa/biossíntese , Lignina/genética , Oxirredução , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...